Laser ablation in liquids

The secret of our nanomaterials lies in their generation process: Nanoparticles by Particular® are not chemically synthesized, but result from a physical laser ablation - our raw material is not a chemical precursor, but solid bulk material. This leads to a high quality and best conditions for immediate post-processing.

conjugated nanoparticle

Nanotechnology has provided new solutions in many social fields. It will contribute to a world-wide reduction of energy and material consumption and help single humans by means of new diagnosis and therapy tools.

Particular is involved in the field of nanoparticles. These sub-microscopic "material nuggets" unfold special effects due to their large ratio of surface atoms. Half of all nanotechnology efforts world-wide are based on nanoparticles. They can be mixed with material, attached to surfaces, or used as single functional units that bind to biomolecules. With a new production method for nanoparticles, Particular contributes to a future in which everybody will benefit from even more nano-products.


Nanoparticle laser ablation (YouTube) Our process video demonstrates the basic principle at the example of laser ablation of gold nanoparticles in an open vessel filled with water and a contained gold plate. The nanoparticles generated by laser irradiation from above lead to a red coloring, resulting from an optical effect at the surface of gold nanoparticles that absorbs green light. Please also see our video on the material variety of the laser process, demonstrating the same process on different materials.

For production, Particular usually applies different kinds of closed ablation chambers to fulfil varying requirements on nanoparticle dispersions. Thanks to high-power laser systems and flow chambers, the process can be applied continuously.

Small amounts of these colloids are available from our partner STREM Chemicals. If you require large amounts (in the gram or muliti-liter range) on a regular basis, you may want to contact us directly.


Silver coins: polymer with embedded silver nanoparticles Due to its physical approach, laser ablation in liquids is generally different from chemical syntheses. Avoiding chemical precursors is useful for nanotechnology, as high purity is often required - for example in biological or medical applications or when a polymer is to be filled with nanoparticles without impurifying the matrix.

Nanoparticles from Particular offer the following advantages:

  • high purity of the colloids without left over precursors or byproducts,
  • long durability due to electrostatic and optionally sterical stabilization,
  • organic solvents as possible direct dispersants without medium transfer.

Examples of unique applications enabled by Particular's method:

  • adsorption of catalytic nanoparticles to microparticle supports with nanoparticle loads up to 10 wt% and more at constant particle sizes,
  • gold nanomarkers that are lasting and biocompatible (instead of bleaching fluorophores or toxic quantum dots),
  • nano-coatings from the same material as the workpiece to avoid additional material qualifications during product approvals,
  • volume embedding of metal nanoparticles in polymers for longer effectiveness than that of coatings (ion release capacities up to several years),
  • nanoparticle mixtures for coatings and volume embedding with adjustable function combinations.


JPCC 2011 - Laser Ablation and Nanoparticle Generation in Liquids Cover on the right: Laser Ablation and Nanoparticle Generation in Liquids. Journal of Physical Chemistry (Special Issue) C 115 (2011) 12, pp. 4985-5180, by guest editors S. Barcikowski and F. Mafuné.

A selection of further publications on laser-ablated nanomaterial: